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Turbulence
◮ Turbulent is how we characterize unpredictable and chaotic

flow;
◮ Observable in a myriad of different natural phenomena;

◮ Turbulent Mixing, present even in everyday tasks;
◮ Atmospheric and maritime flow;
◮ Solar weather;

◮ Important mechanism in processes involving energy and mass
transport.
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◮ Fluid dynamics is modeled after conservation and balance
laws;

◮ Navier-Stokes equation for the incompressible flow,

∂v

∂t
+ v · ∇v = −

∇p

ρ
+ ν∆v+ f ,

∇ · v = 0,

(1)

where the fluid density is represented by ρ, ν stands for the
kinematic viscosity and f accounts for external forcing per
unit of mass. Derived from the conservation of mass, the
second equation is the condition for incompressibility.

Goedert,G.T.
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Motivating question

◮ Problems:
◮ A system of nonlinear differential equations with very rich

behaviour, acting over an immense number of scales;
◮ Are there solutions for every set of initial/boundary conditions?

Are these solutions well defined for all time, i.e., is there
singularity formation in finite time (blowup)?

◮ The existence of blowup is and open problem even in
simple flow, such as 2D convective flow and 3D ideal flow.

Goedert,G.T.
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The incompressible MHD equations

∂v

∂t
− ν∇2v = −(v · ∇)v+ (b · ∇)b−∇p,

∂b

∂t
− η∇2b = ∇× (v× b),

∇ · v = 0 , ∇ · b = 0,

(2)

where v and b are the velocity and induced magnetic fields, p is
the (magnetic and kinetic) pressure; the density ρ has been taken
as one. These equations follow from the Navier-Stokes equation
taking into account the Lorentz force and from Maxwell equations.

Goedert,G.T.
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◮ The nonlinear terms on the right-hand side redistribute
magnetic and kinetic energy among the full range of scales of
the system.

◮ Three-dimensional systems have three ideal quadratic
invariants, the total energy (E ), the total correlation (C ) and
total magnetic helicity (H) given as follows:

E =
1

2

∫

(v2 + b2)d3x ,

C =

∫

v · bd3x ,

H =

∫

a · (∇× a)d3x ,

(3)

where a = ∇× b.

Goedert,G.T.



Introduction
Renormalization and Symmetries

Dynamical system approach
Universal Asymptotic Solutions for Blowup

Main References

Turbulence
Navier-Stokes equations
MHD equations
Shell Models
Blowup

Shell Models

◮ Discretization of the Fourier space onto concentric spherical
shell, kn−1 ≤ ‖k‖ < kn;

◮ The sequence {kn}n∈N is chosen as a geometric progression
kn = k0h

n; significantly reduces the degrees of freedom of the
model;

◮ one or more scalar variables is assigned to each shell; these
variables may account for fluid velocity, induced magnetic
field, temperature deviation from its mean value, etc.

◮ The spectral Navier-Stokes equation can be written as

∂vj(k)

∂t
=− i

∑

m,n

∫
(

δj ,n −
kjk

′

n

k2

)

vm(k
′)vn(k− k′)d3k′

− νk2vj(k) + fj(k).

(4)

Goedert,G.T.
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Following (4)’s structure, a shell model is defined

dvn

dt
= Cn(v)−Dn(v) + Fn, (5)

Imposing ideal conservation of Energy and Cross-correlation

E = 1
2

∑

(u2n + b2n) , C =
∑

unbn

dvn

dt
= kn[ǫ(v

2
n−1 − b2n−1) + vn−1vn − bn−1bn]

− kn+1[v
2
n+1 − b2n+1 + ǫ(vnvn+1 − bnbn+1)],

dbn

dt
= ǫkn+1[vn+1bn − vnbn+1] + kn[vnbn−1 − vn−1bn].

(6)

where ν is the viscosity, η is the magnetic diffusivity, ǫ is an
arbitrary coupling coefficient and kn = k0h

n.

Goedert,G.T.
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Blowup

◮ Example 1:
dy

dt
= y2. (7)

Solutions of this equation have the form

y(t) = (tc − t)−1 → ∞ as t → tc . (8)

◮ Example 2: Cauchy problem for the inviscid Burgers equation

ut + uux = 0 (9)

solved using the characteristic curves

dt

ds
= 1,

dx

ds
= u. (10)

Goedert,G.T.
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◮ Solutions are constant along characteristics, which have slope
1/u0.

◮ If there are points x1 < x2 such that u0(x1) > u0(x2),

then characteristic curves cross after some time. This leads to
nonclassical (discontinuous) solution and divergence of the
derivatives (blowup).

Goedert,G.T.
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Blowup in our model

◮ We define the norms

∥

∥v ′
∥

∥ =
(

∑

k2nv
2
n

)1/2
,

∥

∥v ′
∥

∥

∞
= sup

n
kn |vn| .

(11)

◮ Note that the norm ‖v ′‖ is then analogous to the enstrophy in
fluid dynamics.

◮ Solutions of (6) are called regular (or classical) if

∥

∥v ′
∥

∥+
∥

∥b′
∥

∥ < ∞ . (12)

Goedert,G.T.
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Blowup criterion

◮ If the initial conditions at t = 0 satisfy the condition (12),
there exists some T > 0 such that (6) has an unique regular
solution u(t) in the interval [0,T ).

Theorem
Let vn(t) and bn(t) be a smooth solution of (6) satisfying the

condition (12) for 0 ≤ t < tc , where tc is the maximal time of

existence for such solution. Then, either tc = ∞ or

∫ tc

0

∥

∥v ′
∥

∥

∞
dt = ∞. (13)

Goedert,G.T.
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Proof schematics

◮ If (13) is true, then ‖v ′‖
∞

is unbounded for 0 ≤ t < tc and
(12) is false; (13) is a sufficient condition for blowup.

◮ It is also a necessary condition; suppose there is blowup:

◮ Evaluate
1

2

d

dt

(

‖v ′‖
2
+ ‖b′‖

2
)

;

◮ Manipulate each terms using the triangular, Cauchy-Schwarz
and kn |vn| ≤ ‖v ′‖

∞
inequalities, showing that there is a

constant D such that

d

dt

(

‖v ′‖
2
+ ‖b′‖

2
)

< D ‖v ′‖
∞

(

‖v ′‖
2
+ ‖b‖

2
)

(14)

◮ From the Gronwall inequality

(

‖v ′‖
2
+ ‖b′‖

2
)

t=tc

<
(

‖v ′‖
2
+ ‖b′‖

2
)

t=0
exp

(

D

∫ tc

0

‖v ′‖
∞

dt

)

(15)

Goedert,G.T.
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Renormalization Scheme

Definition
Let τ be the renormalized time, implicitly defined by

t =

∫ τ

0

exp

(

−

∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′, (16)

The renormalized velocity and magnetic variables are defined as

un = exp

(

−

∫ τ

0

R(τ ′)dτ ′
)

knvn,

βn = exp

(

−

∫ τ

0

R(τ ′)dτ ′
)

knbn.

(17)

Goedert,G.T.
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Renormalized shell model

dun

dτ
= −R(τ)un + Pn ,

dβn
dτ

= −R(τ)βn + Qn (18)

Pn = ǫ(h2(u2n−1 − β2
n−1)− unun+1 + βnβn+1)

+ h(un−1un − βn−1βn)− h−1(u2n+1 − β2
n+1),

Qn = ǫ(un+1βn − unβn+1) + h(unβn−1 − un−1βn).

(19)

◮ R(τ) is found by imposing
∑

u2n + β2
n = c :

R(τ) =

∑

unPn + βnQn
∑

u2n + β2
n

(20)

◮ Moreover, at t = τ = 0,
∑

u2n =
∑

k2nv
2
n = ‖v‖2 < ∞. The

same is true for
∑

βn, then c < ∞.

Goedert,G.T.
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Lemma:
For any nontrivial initial conditions of finite ℓ2-norm, a regular
solution un and βn of the renormalized system (18) exists and is
unique for 0 ≤ τ < ∞. This solution is related by (16) and (17) to
the regular solution vn and bn of the original system (6) for t < tc ,
where tc = lim

τ→∞

t(τ).

Proof schematics:

◮ As the renormalized model is constructed from (16) and (17), it is
sufficient to show that (20) is well defined for all 0 ≤ τ
corresponding to some t < tc ;

◮ Substituting Pn e Qn and bounding each term (as in
∣

∣ǫh2u2n−1

∣

∣ ≤ |ǫ| h2c), we conclude that R(τ) < ∞ for all τ ≥ 0;

◮ As |un| < c1/2 we see that |knvn| < ∞, i.e. ‖v ′‖
∞

< ∞, for all t
corresponding to a 0 ≤ τ < ∞. From Theorem 1 it follows that
t < tc .

Goedert,G.T.
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Symmetries

◮ The renormalized system has the following symmetries
(S.R.1) τ 7→ τ/a, un 7→ aun, βn 7→ aβn for arbitrary real
constant a;
(S.R.2) τ 7→ τ − τ0 for arbitrary real τ0;
(S.R.3) un 7→ un+1, βn 7→ βn+1

◮ Lemma: From definition (17), the symmetries (S.R.1-3) lead
to the following symmetries of the original shell model:
(S.N.1) t 7→ t/a, vn 7→ avn, bn 7→ abn for arbitrary real
constant a;
(S.N.2) t 7→ (t − t0)/a, vn 7→ avn, bn 7→ abn, where a and t0
are uniquely defined by τ0 in (S.R.2);
(S.N.3) vn 7→ hvn+1, bn 7→ hbn+1

Goedert,G.T.
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Types of solutions

◮ We observe that, as the blowup time is taken to infinity,
solutions develop as different types of waves travelling towards
larger shells

◮ Travelling wave solutions
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◮ Periodically pulsating wave solutions
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◮ Chaotically pulsating wave solutions
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Poincaré map

◮ We estimate the center nw of a solution
w = (..., un, un+1, ..., βn, βn+1, ...) as

nw (τ) =
∑

n(u2n + β2
n)/
∑

(u2n + β2
n) (21)

◮ We take the sequence τi as the times necessary for a solution
center to travel by i shells

nw (τi ) = nw (0) + i (22)

◮ We define a Poincaré map P as

w ′P = w , u′n = un+1(τ1), β′

n = βn+1(τ1),

w ′P i = w , u′n = un+i (τi ), β′

n = βn+i (τi ).
(23)

Goedert,G.T.
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Fixed-point attractor
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Periodic attractor
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Chaotic attractor
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Bifurcation Diagram
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Asymptotic travelling wave solution
◮ Let us first consider the case bn = 0. For τ sufficiently big,

un(τ) = aU(n − aτ) (24)

◮ We define

y =
1

log h

∫ 1/a

0

R(τ)dτ, V (t − tc) = exp

(
∫ τ

0

R(τ)dτ

)

U(−τ)

(25)
where τ is related to t by (16) and R is given by (20).

◮ Theorem: If y > 0, then solution vn(t) related to (24), for arbitrary
posivite constant a, is given by

vn(t) = aky−1
n V (aky

n (t − tc)) (26)

where the blowup time tc < ∞ is given by

tc =

∫

∞

0

exp

(

−

∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ (27)

Goedert,G.T.
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Proof schematics

◮ First, we prove that the limit tc converges. Using the
periodicity of R , from the definition of y

∫ τ

0

R(τ ′)dτ ′ > D + τy log h. (28)

Using the definition of tc (27), for every positive y

tc <

∫

∞

0

exp (−D − τy log h) dτ < ∞. (29)

◮ Taking y and using hn = hn, from the periodicity of R

kyn = exp

(
∫ τ+n

τ
R(τ ′)dτ ′

)

. (30)

Goedert,G.T.
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◮ We study the solution at a time t ′ corresponding to
τ ′ = τ + n,

tc − t ′ =

∫

∞

τ+n

exp

(

−

∫ τ ′

0

R(τ ′′)dτ ′′

)

dτ ′ = k−y
n (tc − t).

(31)
◮ Then, from the limiting solution and the renormalization

scheme,

vn(t
′) = ky−1

n exp

(
∫ τ

0

R(τ ′)dτ ′
)

U(−τ) = ky−1
n V (t − tc).

(32)
◮ Note that, (28) implies that

exp

(
∫ τ

0

R(τ ′)dτ ′
)

→ ∞ as τ → ∞. (33)

According to (17) and (24), this yields an unbounded norm
‖v ′‖∞ for t → t−c .

Goedert,G.T.
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Asymptotic Blowup Solution of Period (1,2)
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Conclusions

◮ We prove an analytic criterion for blowup;

◮ Our method constructs asymptotic blowup solutions;
◮ These solutions are universal: depend only on the attractor,

selected by the value of an invariant;
◮ We show that there is blowup in the case of existence of these

attractors;

◮ Asymptotic solutions give scaling laws near blowup, useful for
other applications;

◮ First (to our knowledge) observation of coexisting blowup
scenarios.

Goedert,G.T.
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